Tailored Cyclodextrin Pore Blocker Protects Mammalian Cells from Clostridium difficile Binary Toxin CDT
نویسندگان
چکیده
Some Clostridium difficile strains produce, in addition to toxins A and B, the binary toxin Clostridium difficile transferase (CDT), which ADP-ribosylates actin and may contribute to the hypervirulence of these strains. The separate binding and translocation component CDTb mediates transport of the enzyme component CDTa into mammalian target cells. CDTb binds to its receptor on the cell surface, CDTa assembles and CDTb/CDTa complexes are internalised. In acidic endosomes, CDTb mediates the delivery of CDTa into the cytosol, most likely by forming a translocation pore in endosomal membranes. We demonstrate that a seven-fold symmetrical positively charged β-cyclodextrin derivative, per-6-S-(3-aminomethyl)benzylthio-β-cyclodextrin, which was developed earlier as a potent inhibitor of the translocation pores of related binary toxins of Bacillus anthracis, Clostridium botulinum and Clostridium perfringens, protects cells from intoxication with CDT. The pore blocker did not interfere with the CDTa-catalyzed ADP-ribosylation of actin or toxin binding to Vero cells but inhibited the pH-dependent membrane translocation of CDTa into the cytosol. In conclusion, the cationic β-cyclodextrin could serve as the lead compound in a development of novel pharmacological strategies against the CDT-producing strains of C. difficile.
منابع مشابه
EGA Protects Mammalian Cells from Clostridium difficile CDT, Clostridium perfringens Iota Toxin and Clostridium botulinum C2 Toxin
The pathogenic bacteria Clostridium difficile, Clostridium perfringens and Clostridium botulinum produce the binary actin ADP-ribosylating toxins CDT, iota and C2, respectively. These toxins are composed of a transport component (B) and a separate enzyme component (A). When both components assemble on the surface of mammalian target cells, the B components mediate the entry of the A components ...
متن کاملCholesterol- and sphingolipid-rich microdomains are essential for microtubule-based membrane protrusions induced by Clostridium difficile transferase (CDT).
Clostridium difficile toxin (CDT) is a binary actin-ADP-ribosylating toxin that causes depolymerization of the actin cytoskeleton and formation of microtubule-based membrane protrusions, which are suggested to be involved in enhanced bacterial adhesion and colonization of hypervirulent C. difficile strains. Here, we studied the involvement of membrane lipid components of human colon adenocarcin...
متن کاملTailored ß-Cyclodextrin Blocks the Translocation Pores of Binary Exotoxins from C. Botulinum and C. Perfringens and Protects Cells from Intoxication
BACKGROUND Clostridium botulinum C2 toxin and Clostridium perfringens iota toxin are binary exotoxins, which ADP-ribosylate actin in the cytosol of mammalian cells and thereby destroy the cytoskeleton. C2 and iota toxin consists of two individual proteins, an enzymatic active (A-) component and a separate receptor binding and translocation (B-) component. The latter forms a complex with the A-c...
متن کاملMembrane translocation of binary actin-ADP-ribosylating toxins from Clostridium difficile and Clostridium perfringens is facilitated by cyclophilin A and Hsp90.
Some hypervirulent strains of Clostridium difficile produce the binary actin-ADP-ribosylating toxin C. difficile transferase (CDT) in addition to Rho-glucosylating toxins A and B. It has been suggested that the presence of CDT increases the severity of C. difficile-associated diseases, including pseudomembranous colitis. CDT contains a binding and translocation component, CDTb, that mediates th...
متن کاملClostridium difficile Binary Toxin CDT Induces Clustering of the Lipolysis-Stimulated Lipoprotein Receptor into Lipid Rafts
UNLABELLED Clostridium difficile is the leading cause of antibiotics-associated diarrhea and pseudomembranous colitis. Hypervirulent C. difficile strains produce the binary actin-ADP-ribosylating toxin CDT (C. difficile transferase), in addition to the Rho-glucosylating toxins A and B. We recently identified the lipolysis-stimulated lipoprotein receptor (LSR) as the host receptor that mediates ...
متن کامل